1 Watt Audio Power Amplifier

General Description

The LM4890isanaudiopoweramplifierprimarilydesigned for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1 watt of continuous average power to an 8Ω BTL load with less than 1% distortion (THD+N) from a $5V_{DC}$ power supply.

Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of externalcomponents. The LM4890doesnotrequireoutput coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The LM4890featuresalow-powerconsumptionshutdown mode, which is achieved by driving the shutdown pin with logiclow. Additionally, the LM4890features an internal thermal shutdown protection mechanism.

The LM4890containsadvancedpop&clickcircuitrywhich eliminates noises which would otherwise occur during turn-on and turn-off transitions.

The LM4890isunity-gainstableandcanbeconfiguredby external gain-setting resistors.

Key Specifications

■ PSRR at 217Hz, $V_{DD} = 5V$ (Fig. 1) 62dB(typ.) ■ Power Output at 5.0V & 1% THD 1W(typ.) ■ Power Output at 3.3V & 1% THD 400mW(typ.) ■ Shutdown Current 0.1µA(typ.)

Features

- Available in space-saving packages: micro SMD, MSOP, SOIC. and LLP
- Ultra low current shutdown mode
- BTL output can drive capacitive loads
- Improved pop & click circuitry eliminates noises during turn-on and turn-off transitions
- 2.2 5.5V operation
- No output coupling capacitors, snubber networks or bootstrap capacitors required
- Thermal shutdown protection
- Unity-gain stable
- External gain configuration capability

Applications

- Mobile Phones
- PDAs
- Portable electronic devices

Connection Diagrams (Continued)

Mini Small Outline (MSOP) Package

Top View Order Number LM4890MM See NS Package Number MUA08A

Small Outline (SO) Package

Top View Order Number LM4890M See NS Package Number M08A

MSOP Marking

Top View G - Boomer Family 90 - LM4890MM

SO Marking

Top View
XY - Date Code
TT - Die Traceability
Bottom 2 lines - Part Number

Typical Application

FIGURE 1. Typical Audio Amplifier Application Circuit

180°C/W

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (Note 11) 6.0V

-65°C to +150°C Storage Temperature

Input Voltage -0.3V to V_{DD} +0.3V

Power Dissipation (Note 3) Internally Limited

ESD Susceptibility (Note 4) 2000V

Junction Temperature 150°C

Thermal Resistance

 θ_{JC} (SOP) 35°C/W 150°C/W

 θ_{JA} (SOP)

220°C/W θ_{JA} (8 Bump micro SMD, Note 12)

 θ_{JA} (9 Bump micro SMD, Note 12) θ_{JC} (MSOP)

56°C/W θ_{JA} (MSOP) 190°C/W θ_{JA} (LLP) 220°C/W

Soldering Information

See AN-1112 "microSMD Wafers Level Chip Scale

See AN-1187 "Leadless Leadframe Package (LLP)."

Operating Ratings

Temperature Range

 $-40^{\circ}C \le T_A \le 85^{\circ}C$ $T_{MIN} \leq T_A \leq T_{MAX}$ Supply Voltage $2.2V \leq V_{DD} \leq 5.5V$

Electrical Characteristics $V_{DD} = 5V$ (Notes 1, 2, 8)

The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

			LM4890		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Notes 7, 9)	(Limits)
I _{DD}	Quiescent Power Supply Current	V _{IN} = 0V, I _o = 0A, No Load	4	8	mA (max)
		$V_{IN} = 0V$, $I_o = 0A$, 8Ω Load	5	10	mA (max)
I _{SD}	Shutdown Current	V _{SHUTDOWN} = 0V	0.1	2.0	μA (max)
V _{SDIH}	Shutdown Voltage Input High			1.2	V (min)
V _{SDIL}	Shutdown Voltage Input Low			0.4	V (max)
Vos	Output Offset Voltage		7	50	mV (max)
R _{OUT-GND}	Resistor Output to GND (Note 10)		8.5	9.7	kΩ (max)
				7.0	$k\Omega$ (min)
Po	Output Power (8Ω)	THD = 2% (max); f = 1 kHz	1.0	0.8	W
T _{WU}	Wake-up time		170	220	ms (max)
T _{SD}	Thermal Shutdown Temperature		170	150	°C (min)
				190	°C (max)
THD+N	Total Harmonic Distortion + Noise	P _o = 0.4 Wrms; f = 1kHz	0.1		%
PSRR	Power Supply Rejection Ratio	V _{ripple} = 200mV sine p-p	62 (f =	55	dB (min)
İ	(Note 14)	Input Terminated with 10 ohms to	217Hz)		
		ground	66 (f = 1kHz)		
T _{SDT}	Shut Down Time	8 Ω load	1.0		ms (max)

Electrical Characteristics $V_{DD} = 3V$ (Notes 1, 2, 8)

The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for $T_A = 25$ °C.

			LM4890		Units
Symbol	Parameter	Conditions	Typical	Limit	(Limits)
			(Note 6)	(Notes 7, 9)	(Lillits)
I _{DD}	Quiescent Power Supply Current	$V_{IN} = 0V$, $I_o = 0A$, No Load	3.5	7	mA (max)
		$V_{IN} = 0V$, $I_o = 0A$, 8Ω Load	4.5	9	mA (max)
I _{SD}	Shutdown Current	V _{SHUTDOWN} = 0V	0.1	2.0	μA (max)
V _{SDIH}	Shutdown Voltage Input High			1.2	V(min)
V_{SDIL}	Shutdown Voltage Input Low			0.4	V(max)
Vos	Output Offset Voltage		7	50	mV (max)
R _{OUT-GND}	Resistor Output to Gnd (Note 10)		8.5	9.7	kΩ (max)
			0.5	7.0	kΩ (min)
T _{WU}	Wake-up time		120	180	ms (max)

Electrical Characteristics $V_{DD}=3V$ (Notes 1, 2, 8) The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for $T_A=1$ 25°C. (Continued)

			LM4890		l luite
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Notes 7, 9)	(Lillins)
Po	Output Power (8Ω)	THD = 1% (max); f = 1kHz	0.31	0.28	W
T _{SD}	Thermal Shutdown Temperature		170	150	°C(min)
			170	190	°C(max)
THD+N	Total Harmonic Distortion + Noise	$P_o = 0.15Wrms$; $f = 1kHz$	0.1		%
PSRR	Power Supply Rejection Ratio	V _{ripple} = 200mV sine p-p	56 (f =	45	dB(min)
	(Note 14)	Input terminated with 10 ohms to	217Hz)		
		ground	62 (f = 1kHz)		

Electrical Characteristics $V_{DD} = 2.6V$ (Notes 1, 2, 8) The following specifications apply for for the circuit shown in Figure 1 unless otherwise specified. Limits apply for $T_A = 25$ °C.

			LM4890		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Notes 7, 9)	(Lillins)
I _{DD}	Quiescent Power Supply Current	$V_{IN} = 0V$, $I_o = 0A$, No Load	2.6		mA (max)
I _{SD}	Shutdown Current	V _{SHUTDOWN} = 0V	0.1		μA (max)
Po	Output Power (8Ω)	THD = 1% (max); f = 1 kHz	0.2		W
	Output Power (4Ω)	THD = 1% (max); f = 1 kHz	0.22		W
THD+N	Total Harmonic Distortion + Noise	$P_o = 0.1$ Wrms; $f = 1$ kHz	0.08		%
PSRR	Power Supply Rejection Ratio	V _{ripple} = 200mV sine p-p	44 (f =		dB
	(Note 14)	Input Terminated with 10 ohms to	217Hz)		
		ground	44 (f = 1kHz)		

External Components Description (Figure 1)

Comp	onents	Functional Description		
1.	R _{IN}	Inverting input resistance which sets the closed-loop gain in conjunction with R _f . This resistor also form		
		high pass filter with C_{IN} at $f_C = 1/(2\pi R_{IN}C_{IN})$.		
2.	C _{IN}	Input coupling capacitor which blocks the DC voltage at the amplifier's input terminals. Also creates a		
		highpass filter with R_{IN} at $f_c = 1/(2\pi R_{IN}C_{IN})$. Refer to the section, Proper Selection of External		
		Components , for an explanation of how to determine the value of C _{IN} .		
3.	R _f	Feedback resistance which sets the closed-loop gain in conjunction with R _{IN} .		
4.	Cs	Supply bypass capacitor which provides power supply filtering. Refer to the section, Power Supply		
		Bypassing, for information concerning proper placement and selection of the supply bypass capacitor,		
		C _{BYPASS} .		
5.	C _{BYPASS}	Bypass pin capacitor which provides half-supply filtering. Refer to the section, Proper Selection of External		
		Components , for information concerning proper placement and selection of C _{BYPASS} .		

Application Information (Continued)

FIGURE 5. REFERENCE DESIGN BOARD and PCB LAYOUT GUIDELINES - MSOP & SO Boards

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

